NAVIGATION

An in-depth look into how we navigate the world

Information sourced from Dr. Marlene Behrmann's publications https://www.cmu.edu/dietrich/behrmannlab/Publications/index.html

Navigation is essential to humans carrying out their daily activities. Visual navigation uses both the vestibular system and muscular movements to determine environmental orientation.

Path integration is key to navigation

- Helps in determining one's position based on internally generated self-motion signals
- Derives current displacement from one's last known position

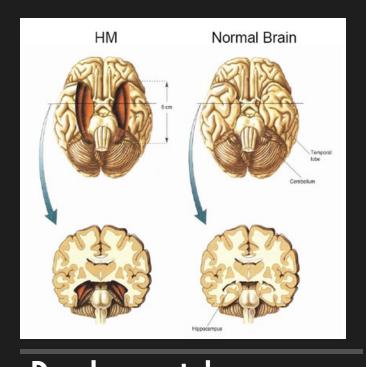
BRAIN REGIONS

OCCIPITO-TEMPORAL & PARAHIPPOCAMPAL REGION

 Recognizes previous, familiar landmarks

MEDIAL TEMPORAL LOBE

 Represent newly learned routes & environment


RETROSPINAL CORTEX

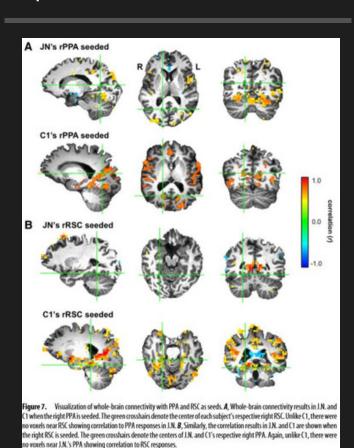
• Encodes & derives directional information from landmarks

POSTERIOR PARIETAL CORTEX

• Represents location of objects with respect to themselves

DR. BEHRMANN'S RESEARCH

Developmental topographic disorientation (DTD)


The functional properties of the posterior parietal cortex, retrospinal cortex, & other brain areas is compared in patients with DTD

This is studied localization and fMRI adaptation experiments

Path-integration deficits

Medial temporal lobe injury plays a key role in path integration deficits along linear paths

This is studied with partial medial temporal lobectomies

